

BUILDING TECHNOLOGIES OFFICE

An Overview & Areas of Interest

Jared Langevin
EERE Science & Technology
Policy Fellow

ARPA-E DELTA Kickoff Portland, OR, May 21-22, 2015

Building Technologies Office on the R&D Spectrum

FUNDAMENTAL RESEARCH

FIRST COMMERCIALIZATION

MARKET PENETRATION

BUILDING TECHNOLOGIES OFFICE

Emerging Technologies

ONR

Commercial & Residential Buildings
Integration

Codes & Standards

ARPA-E

NSF

DOE OFFICE OF SCIENCE **FEMP**

ESTCP

GSA GREEN PROVING GROUNDS

Building Technologies Office on the R&D Spectrum

FUNDAMENTAL RESEARCH

FIRST COMMERCIALIZATION

MARKET PENETRATION

BUILDING TECHNOLOGIES OFFICE

Emerging Technologies

ONR

Commercial & Residential Buildings
Integration

Codes & Standards

ARPA-E

NSF

DOE OFFICE OF SCIENCE FEMP

ESTCP

GSA GREEN PROVING GROUNDS

Emerging Technologies R&D Areas & Goals

	Solid State Lighting	HVAC / Water Heating / Appliances	Windows & Envelope	Building Energy Modeling	Sensors & Controls
2020 Primary Energy Reduction Goal	30%	10% (HVAC) 20% (WH) 15% (Appl.)	15%	TBD	10%
2030 Primary Energy Reduction Goal	65%	25% (HVAC) 35% (WH) 30% (Appl.)	35%	TBD	20%

Technology Manager

Jim Brodrick

Tony Bouza

Bahman Habibzadeh

Amir Roth

Marina Sofos

HVAC, Water Heating, & Appliances R&D

· Near-term and next-gen tech. acceleration:

- Adv. and Non-Vapor Compression (VC) heat pumps
- Low Global Warming Potential (GWP) refrigerants
- Regional and integrated solutions
- Simplest application first (i.e., non-VC water heating)

Sheetak thermoelectric water heater.

Technical roadmap documents:

HVAC:
 http://energy.gov/eere/buildings/downloads/research-development-roadmap-emerging-hvac-technologies

Water Heating:
 http://energy.gov/eere/buildings/downloads/research-development-roadmap-emerging-water-heating-technologies

• Low GWP Refrigerants: http://energy.gov/eere/buildings/downloads/research-development-roadmap-next-generation-low-global-warming-potential

• Next-Gen Appliances http://energy.gov/eere/buildings/downloads/research-development-roadmap-next-generation-appliances

HVAC R&D Examples

Non-VC, Low GWP Cooling Systems

MD Energy & Sensor (MEST):

- Thermoelastic cooling
- High power density refrigerant bar loading belt
- Addresses size/weight and material cost barriers to system

MEST GEN-III prototype.

DAIS Analytic

- Membrane HVAC and electrochemical vapor compressor
- Targeting commercial RTUs,
 Dedicated Outdoor Air Systems
- ORNL testing and modeling

Windows & Envelope R&D

Highly insulating windows and building envelope

- Windows: R-10 (residential); R-7 (commercial)
- Opaque Envelope: R-12/in. retrofit
- Infiltration: <1 ACH50 (residential); <0.25 CFM75/ft² (commercial)

install)

Dynamic windows

- Windows and window films
- Δ SHGC > 0.4

*Key barrier: cost-effectiveness (3X cost multiplier from components to

Daylighting

50% lighting energy reduction for 50 ft. floor plate

• Technical roadmap documents:

http://energy.gov/sites/prod/files/2014/02/f8/BTO_windows_and_envelope_report_3.pdf

Windows R&D Example

Window Attachments

• Benefits:

- Cost effective retrofit application
- Add energy saving potential

• EnerLogic window film:

- Deposited low-emissivity gold material coating
- Up to 50% cooling and 10% heating cost savings
- Invisible appearance
- ~ 1/3 cost of replacement windows

Windows R&D Example

CRAFT & Attachments Ratings

- CRAFT Funding Opportunity (2014, 4 yrs.)
 - Develop/oversee energy performance-based rating/certifications for window attachments
 - Develop attachment performance database
 - Attachments Energy Ratings Council (AERC)

- Considerations for Emerging Attachments:
 - Selling energy savings & comfort label matters!
 - Early involvement in ratings programs is good
 - Modeling tools must work with your product
 - LBNL is a great resource

Building Simulation R&D

EnergyPlus & OpenStudio

EnergyPlus

- Whole building energy modeling engine
- Supports multiple use cases
- Recently redeveloped in C++ for speed/interoperability

Image source: Hoyt et al, 2009

OpenStudio

- "Operating system" for building energy modeling
- Supports creation of "measures"
 - Building Component Library

github.com/NREL/EnergyPlus github.com/NREL/OpenStudio

Sensors & Controls R&D

- Vision: self-configuring, self-commissioning, self-learning buildings that participate in transactions
- Open-source sensors
 - Wireless, self-powered sensor packages
- Foundational control theories
 - Control algorithms and applications
- Transaction-based controls
 - Open-architecture control platforms
 - Transaction-ready buildings
- Roadmap forthcoming (workshop @ 2015 BTO Peer Review)

S&C Transactional Network.

Sensors & Controls R&D Example

Building Energy Management Software

- Open architecture control system for small/medium buildings
- Optimize energy efficiency and occupant comfort

Building Efficiency R&D Prioritization

Primary Energy

Carbon Emissions

Other (?)

Non-Energy Benefits (NEBs)

PROJECTION HORIZON (EIA AEO) POTENTIAL IMPACTS

(measure-by-measure & aggregated)

MEASURES & MARKETS
(EIA AEO)

Impact Snapshot

THE STATES OF THE

Sector-Wide Savings & Costs, 2030

2030 Staged Max. Adoption Primary Energy Savings (Quads)

How to Get Involved with BTO

- Apply to Funding Opportunity Announcement (FOA):
 - 2016 BENEFIT and BUILD, Solid State Lighting FOA
- Participate in a roadmapping workshop:
 - Building Energy Modeling Workshop Seattle (June 9th) & DC (June 15th)
- Volunteer to be a reviewer
- Participate in Requests for Information (RFIs) and annual program peer review
- Buildings of the Future Scoping Study (futurebuildings.pnnl.gov)
- Subscribe to BTO updates (energy.gov/eere/buildings)

THANK YOU

jared.langevin@ee.doe.gov